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In 1990, A, Horwitz proved a theorem about interpolation by restricted range
polynomials and asked some railed questions. This paper gives affirmative answers
to Horwitz' questions and generalizes his theorem. 1993 Academic Press, Inc.

INTRODUCTION

In 1980, Briggs and Rubel [1] proved the existence of a non-negative
polynomial of degree :s;; n that interpolates a non-negative continuous
function at n + 1 distinct points, In other words, they showed that for
some choice of n + 1 distinct points, the unique Lagrange interpolant to f
at those points is a non-negative polynomiaL Recently, applying a
perturbation method, Horwitz [2] gave a similar result for interpolation
by polynomials with restricted ranges, that is,

THEOREM H. Suppose f E qo, 1] with O:s;; f(x) :s;; 1, X E [0, 1]. Let n he
a positive integer and assume that

(i) n is even iff(O)=f(I)=O or 1,

(ii) n is odd (ff(O) =0 andf(l) = 1, or f(O)= 1 andf(1) =0.

Then there exist a polynomial p of degree :S;;n with O:s;; p(x):s;; 1, x E [0, 1],
which interpolates f at n + 1 distinct points in [0, 1].

In addition, Horwitz asked (see [2]): Can assumptions (i) and (ii) be
removed in Theorem H? Does Theorem H hold when the upper and lower
functions are not necessarily constant? And does it hold for Chebyshev
systems other than the polynomials? Unfortunately, as Horwitz pointed
out, the techniques in [2] do not seem to answer these questions.

In this paper, using some perturbation techniques different from
Horwitz' we give affirmative answers to the above questions.
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MAIN RESULT

Let [a, b] be a finite interval, n a positive integer. For linearly inde
pendent functions CPo, ..., cp"EC[a, h], we say that eP,,=span{cpo, ... , cp,,} is
the set of all the generalized polynomials. Given two functions I(x) and
u(x) defined on [a,h], by

K(l, u)= {pEeP,,: I(x)~p(x)~u(x), XE [a, h]}

we denote the subset of the generalized polynomials having restricted
ranges.

According to the notion introduced in [3], we call {CPo, ... , cp,,} an
extended Chebyshev system of order 2 on [a, b] provided that each CPj'
j = 0, , n has a continuous derivative, and for arbitrary a ~ X o~
X 1 ~ ~ x" ~ h, where no group of three consecutive x/s can take the
same value, it follows that

ePo(xo) ePl(XO)'" eP,,(xo)

ePo(x Ii eP 1(x I) ... eP,,(x Ii
>0,

ePo(x,,) ePI!x,,)'" eP,,(x,,)

where eP,(xJ = CPj(xJ if X j I < x" eP,(.",) = cp;(xJ if x, I = Xi' °~ j ~ n. For
p E eP,p where {CPo, ... , cp,,} is an extended Chebyshev system of order 2, we
say that x is a zero of order 2 of p if p(x) = p'(x) = 0. Then p has at most
n zeros in [a, h] counting multiplicities up to 2. And when p has n distinct
zeros, p(x) changes sign as X passes through each of its zeros and preserves
the same sign between two consecutive zeros.

THEOREM. Let {CPo, ..., cp,,} he an extended Chehyshev system of order 2
on [a,h], and PI' p lEeP" he suhject to p\(x)<p I(X), xE[a,h]. If
fEC[a,h] sati.lfies p,(x)~f(x)~p I(X), xE[a,h], then there exists a
p E K( PI' PI) which interpolates fat n + I distinct points in [a, b].

Prool We can assume that f ¢: eP" and

d=}- inf{ I~' - n: C C E D, ¢' =I ¢"} > 0,

where

D= {XE [a, b]:f(x)= p\(x) or P \(x)},

for otherwise p = f or p,\ (b = I or - I) satisfies the requirements of the
theorem.
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Based on Theorem 3.1 in [4], there exists a generalized polynomial p*
which is the best uniform approximation (with the uniform norm
II ·11 = SUP,oE [a. b] /·1) to f from K(p l' P - J. Let

if xEE , v C I ,

if x E E _ I V C _ I;

and

Co = {x E [a, h] ; P: (x) = 0 },

Eo = {x E [a, h]: f(x) - p*(x) = b Ilf - p* II },

{
1,

er(x) = -1,

C±=CIVC_ 1 •

b=±l;

b=±I;

b= ±1;

Based on Theorem 3.2 in [4], we can find n + 2 points Xl < ... < x" + 2

such that X,EC± vEl vE_ 1 and

i= 2, ... , n + 2.

Write

and

C= g E C±: p*(O =f(O},

c = ! min{ It - n: ~', ~"E C ± v {a, h}, ¢' to C}.

Let ICI and IC ± I denote the numbers of elements of C and C ±' respec
tively. If ICI ~ n + 1, then p* is the required polynomial. And if IC ± I = 0,
then by the alternating property p* still meets the requirement of the
theorem. So we assume that

ICI ~n,

Moreover, it can be proved that

In fact, if there exist at least n + 2 points in C ±' then we can find a
bE {I, -I} with ICol ~ (n + 3)/2 if n is odd. Since each point in Co is a
zero of pt of order 2 with the exception of at most two endpoints, pt has
at least n + 1 zeros counting multiplicities, which is a contradiction. When
n is even, if there exists abE {I, -I} such that ICol ~ (n + 2)/2 + 1, then
pt has at least n + 2 zeros, and if IC 11 = IC _ Ii = (n + 2)/2, then there exists
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a <5 E {I, -I} for which at most one endpoint belongs to C b , and hence pt
has at least n + 1 zeros. Again, these are impossible.

In what follows, we find n points {y i } 7= I' a q E c[> n with n zeros {Yi}'
and an 8> 0 such that p* - £q meets the requirements of the theorem.

Case 1. If IC ± I~ n, write n' = IC ± I and

where

Let

i <j.

J = {l, ..., n' - 1, n}.

(1)

Choose arbitrarily n-n' points in (~n'-I +c, ~n-c) (or in (a, ~n-c) if
n' = 1),

Y n' < ." < Y n - I ,

and set

(J = 1.

Case 2. If IC ± 1= n + 1, then we can find an ~* E C ± \C since ICI ~ n.
Write

subject to (1). Let

J={l, ... ,n}.

Choose a ~j. E C ± adjacent to ~*, and let

(J(~*) (J(~j.)(~j. - ~*) > 0,

(J(~*) (J(~j.)(~j. - ~*) < O.
(2 )

In both cases, we set a Yj adjacent to ~j for each j E J, Let

JEJ. (3)

Write

XI = g/ JEJ, P:/~J)(U#O},

X2= gj:jEJ, ~j+(JjC¢ [a, b]}
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and

Clearly

Since X n C c {~j: j E J} we can write
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(4)

(5)

if ~jEX*,

otherwise;
(6)

and for i = 1, ..., m, let

VE y.
" J. .Ii

be undetermined, where

(7 )

or (8)

with

p:;;;; min{ c, d} (9 )

a positive constant, which we determine later.
Now, take a non-vanishing qE(/Jn having n zeros {yJ7~1' For each

~jrtX*,jEJ, based on (6), (7), and (8) we see that Yj is on the right side
of ~ j if aj = 1 and on the left side if aj = - 1. Therefore, in Case 1 we can
find from (3) that for any pair of consecutive points ~' < C in C ± \X*

there exist an even number of zeros of q in (~', C),

if a(~') a(C) > 0

there exist an odd number of zeros of q in (~', ~"),

if a(~') a(C) < O.

Moreover, if ~' or ~"E X 2 C X *, then by the definition of X 2 , (*) is still true
though (6) holds. So (*) holds for C±\X1• In Case 2, the situation is
similar if ~* rt g', C}. And if ~* < ~j" then by (2) and (3) we have

a(~*) a(~j')> 0,

a( ~ *) a( ~j' ) < o.
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Considering in addition that there exists no zero of q "adjacent to" ~*, we
can see that (*) holds if ~f=~*, ~"=~j" and ifj*> 1, t=~j'-l' ~"=(*

then (*) holds as well. Similarly, when ~ * > ~j' the same conclusion holds.
Therefore, multiplied by - 1 if necessary, q satisfies

0-(0 q(~) ~ 0,

and

0-(0 q(x) ~ 0, ( 10)

where O(~, p) denotes the closure of O( (, p), the p-neighbourhood of ~.

Now suppose that we have determined p subject to (9) and Yj
(j E {J;} 7'~ 1) subject to (7) (and hence q) and have found an e > 0 such that

where

{

el = min {min Ipl(x)I},
xE[a,h]\OrL+,p) b~±l

e2 = .min { mi~ Ip~<7(o(x)l},
'EL± XEOr" p)

e3= min If(x)-p*(x)l;
\"EX\,C

and

( 11 )

(12 )

(13 )

(14 )

if Xl =F cP; moreover

Then by (11), (12), (10), and (14) we see that

i= 1, "', m. ( 15)

Pl(X) ~ p*(x) - eq(x) ~ p _leX),

Combining this with (15) we get

On the other hand, by (5) we can rewrite
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and, based on (15), for each ~j, we can choose an adjacent point
X;,EO((j,' p) satisfying

<T( ~J )[P:I ,)(xJ' ) - eq(x)')] = 0,
. I '->11 r ,

i= 1, ... , m.

It is then easy to check that when x takes the values of (X\C) u {x;,} 7~ I

one by one in order of magnitude, f(x)- [p*(x)-eq(x)] takes positive
and negative values alternately, because for the points in X\C we have (11)
and (13), and for x;, we have PI(xi,l <f(xi,l <P-I(X;,l, which is obtained
from (9) and the definition of d. In addition, the function equals zero when
x EX (l C (l X* by (6). So from (4) we conclude that p* - eq interpolates.r
at n + I distinct points.

It remains to find p, e, and Yii' i = 1, ... , m (and hence q), satisfying the
demands mentioned above. Let

<Pn(X)

<Pn(YI)

<PO(Yh - I)

<Po(IIJl

Q(X,III,· ..,IIm)=(-I}hajla(~J1) <PoCvh+d

<PoLv,,,, - Jl
<Po(II",)

<PO(Yjm + I)

<Pn(Yh-l)

<P n( III )

<Pn(Yh + I)

<P"(Ylm I)

<Pn(II",)

<P"(Yim+ I)

(16)

By Qo and Qi we denote (a/8x) Q and (8/811i) Q, respectively. From the
definition of an extended Chebyshev system we have

i= 1, ... ,m.

Then for each i = 1, ..., m, by the continuity of Qo there exists Pi> 0 such
that

XEO(~j"Pi)' IIl,EO(~j"Pi)' v=I, ... ,m. (17)
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Furthermore, considering the fact that Qi( ~/k' ~/1' ... , ~/J = 0, k "# i
(k, i = I, ... , m), we can find an tx > 0 and a positive

p'~ min Pi
i= 1, .... In

such that for each i = I, ..., m

IQi(X, '11' ..., '1m)1 > tx,

and

XEO(~/i'P'), '1vEO(~/.,p'), v=I, ... ,m, (18)

XEO(~/k' p') with k"#i, '1 •. EO(~/"p'),

Now let

v= 1, ... , m. (19 )

Jl = max {max IQ(x, "11, ..., tlm)I}·
~iEO(~J,'P') xE[a,h]

i=l ....,m

If Xl = 0, let

P = min{ p', c, d},

and

Then for

q(x) = Q(x, Y/i ' ... , y/J, (20)

where Y/iE Y/
i

(see (8» is undetermined, and (11) holds. And if Xl "#0, we
set

and

max
~iE O(~Ji' p

oo
)

i~I ....,m

{ max IQO(X,'1I, ...,tlm)l},
XE O(~, poo)

~E Xl
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where 0 < p" ~ pi satisfies
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XEO(~,p"),

Let

p = min{ p", c, d},

and

Then clearly q in (20) satisfies (11). And in addition we have (14) because

eq'(X) ~ ~', XEO(~, p),

We must choose Yj, E Yj , so that (15) holds. Fix (1'12, ... , rJm) E Yh x ... X Yim
arbitrarily. Let

Let us consider the sign of M(r,d. For P:(~JI) clearly we have

P:(~}J~il)= 0,

P:(~il)( ~jl) = o.
As for Q, we have

and by (17)

and hence

Thus we see that
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On the other hand, since Q(x, ~jl + (Jjl p, '12' ... , '1m) preserves the same signs
for various x E O( ~h' p) and equals zero if x = ~il + (Jil p, by (17) (let i = 1,
x = '11 = ~jl + (Jil p) it is easy to check that

XE O(~jl' p).

Considering

we get

M(~jl + (Jil p) > 0.

So the continuity of the function implies that there exists an ii I E Yjl such
that

M(iitl = 0. (21 )

Based on (18), QI(X, 'II' ... , '1m) preserves the same signs for various
XE O(~jl' p) and'll E f jl • So for XE O(~jl' p), Q(x, 'II, ... , '1m) are all strictly
monotone increasing (or decreasing) with respect tOY/I' And hence M('1 tl
is strictly monotone as well. So iii E f jl satisfying (21) is unique.

Now, we assume inductively that for any ('Iv, ..., '1m) E Yj , X ..• X Yjm ,

there exists a unique (ii I' ... , ii v_ I) E Yjl X ... x Yj , _ I such that

where

M;(iil' ..., iiv-I' 'Iv) = 0, i = 1, ..., v-I, (22)

By the arbitrariness of 'Iv' (22) determines v-I single-valued functions

on Yj ",

i=I, ...,v-I, (23 )

with their ranges contained in YJi' It can be shown that these functions
are continuous. In fact, if there exist an ii vE f j , and an {'I vi} r~ I c f j , such
that '1v,~iiv (I~ (0), but '1i/=F;('1v') does not converge to iii = Fi(iiJ for
at least one i E {I, ..., v-I}, then selecting a subsequence such that 'I i/~ if;
U= 1, ..., v-I) we have

for i = 1, ..., v-I,
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and ~i #- P1i for at least one i, which contradicts the hypothesis of
uniqueness.

As with M(tld, when tI,. = ~j, and ~j, + (Jj,P' the values of
MAP1l' ..., P1"-I' tI,) (with P1i subject to (23» have opposite signs. So by the
continuity of M" we can find P1, E Yj , such that M,(P1I' ..., P1,) = 0 (where
P1i= Fi (P1J)· Thus we get an (P1I' ..., P1,,)E Yjl X ... X Yj , for which

i= 1, ..., v.

Moreover, this (P11> ..., P1,,) is unique. In fact, if there exists another
(~I' ..., ~,,) satisfying the above requirements, then we can assume that
1~1-P1ll =maxi=I, ..,,, l~i-P1il >0. For any XEO(~jl' p), by (18) we have

IRl(x, P11' ..., P1,)-R 1(x, ~I' P12' ..., P1JI >IX 1~1-P111, (24)

and by (19)

IR1(x, ~l' P12' ..., P1,,)-R 1(x, ~I' ... , ~,.)I

,
,,:; L IR1(x, ~I' ..., ~i-l' P1i' ... , P1,,)-Rdx, ~l' ... , ~i' P1i+I' ..., 1/,.)1

i=2

(25)

Suppose [, ¢E O( ~jJ' p) satisfy

R 1([, 1/ l' •••, 1/,,) = M 1(1/ 1 , , P1,,) = 0,

R I(¢, ~ I' ... , ~,) = M 1(~l' , ~J = O.

Letting x = [in (24) and (25), we see that R l([, ~ l' P12' ..., P1,) has the same
sign as R d[, ij I' ..., ~,). So by R I ([, ~ I> •••, ~,,) ~ 0 we get

R l ([, P11' ..., 1/,,)-R 1([, ~I' 1/2' ..., 1/,,)< -IX 1~1-P1II·

Since (18) implies that Q 1 is sign-preserving for various x E O( ~jt' p), by
(24)

Combining this with (25) we get

R I(¢, 1/ I' ..., 1/,,) = R1(¢, P11' ..., P1,) - R I (¢, ~ l' 1/2' ..., P1,.)

+ R 1(¢, ~l> 1/2' ..., 1/,.) - R 1(¢, ~I' ... , ~,,) < 0,

which contradicts the hypothesis of M l(P11, ..., P1,)=O.
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So at last we find (if I' ..., ifm) E Yjl X ... X Yjm such that

i= 1, ..., m.

If we let Yj; = if j, q defined by (20) satisfies (15).
The proof is completed.

ACKNOWLEDGMENT

The author is grateful to the referee for his valuable corrections and suggestions, which
helped in revising the manuscript.

REFERENCES

1. 1. BRIGGS AND L. A. RUBEL, On interpolation by non-negative polynomials, J. Approx.
Theory 30 (1980), 160-168.

2. A. HORWITZ, Restricted range polynomial interpolation, J. Approx. Theory 62 (1990),
39-46.

3. S. KARLIN AND W. 1. STUDDEN, "TchebychelT Systems: With Applications in Analysis and
Statistics," Interscience, New York, 1966.

4. G. D. TAYLOR, Approximation by functions having restricted ranges, III, 1. Math. Anal.
Appl. 27 (1969), 241-248.


