Interpolation by Generalized Polynomials with Restricted Ranges

SHU-SHENG XU

Department of Mathematics, Jiangnan University, Wuxi, Jiangsu Province, People's Republic of China

Communicted by Frank Deutsch

Received March 8, 1990; accepted in revised form May 8, 1992

In 1990, A. Horwitz proved a theorem about interpolation by restricted range polynomials and asked some ralted questions. This paper gives affirmative answers to Horwitz' questions and generalizes his theorem. C 1993 Academic Press, Inc.

INTRODUCTION

In 1980, Briggs and Rubel [1] proved the existence of a non-negative polynomial of degree $\leq n$ that interpolates a non-negative continuous function at n+1 distinct points. In other words, they showed that for some choice of n+1 distinct points, the unique Lagrange interpolant to f at those points is a non-negative polynomial. Recently, applying a perturbation method, Horwitz [2] gave a similar result for interpolation by polynomials with restricted ranges, that is,

THEOREM H. Suppose $f \in C[0, 1]$ with $0 \le f(x) \le 1$, $x \in [0, 1]$. Let n be a positive integer and assume that

- (i) *n* is even if f(0) = f(1) = 0 or 1,
- (ii) *n* is odd if f(0) = 0 and f(1) = 1, or f(0) = 1 and f(1) = 0.

Then there exist a polynomial p of degree $\leq n$ with $0 \leq p(x) \leq 1$, $x \in [0, 1]$, which interpolates f at n + 1 distinct points in [0, 1].

In addition, Horwitz asked (see [2]): Can assumptions (i) and (ii) be removed in Theorem H? Does Theorem H hold when the upper and lower functions are not necessarily constant? And does it hold for Chebyshev systems other than the polynomials? Unfortunately, as Horwitz pointed out, the techniques in [2] do not seem to answer these questions.

In this paper, using some perturbation techniques different from Horwitz' we give affirmative answers to the above questions.

MAIN RESULT

Let [a, b] be a finite interval, *n* a positive integer. For linearly independent functions $\varphi_0, ..., \varphi_n \in C[a, b]$, we say that $\Phi_n = \operatorname{span} \{\varphi_0, ..., \varphi_n\}$ is the set of all the generalized polynomials. Given two functions l(x) and u(x) defined on [a, b], by

$$K(l, u) = \{ p \in \Phi_n : l(x) \leq p(x) \leq u(x), x \in [a, b] \}$$

we denote the subset of the generalized polynomials having restricted ranges.

According to the notion introduced in [3], we call $\{\varphi_0, ..., \varphi_n\}$ an extended Chebyshev system of order 2 on [a, b] provided that each φ_j , j=0, ..., n has a continuous derivative, and for arbitrary $a \le x_0 \le x_1 \le \cdots \le x_n \le b$, where no group of three consecutive x_i 's can take the same value, it follows that

$$\begin{vmatrix} \tilde{\varphi}_0(x_0) \ \tilde{\varphi}_1(x_0) \cdots \tilde{\varphi}_n(x_0) \\ \tilde{\varphi}_0(x_1) \ \tilde{\varphi}_1(x_1) \cdots \tilde{\varphi}_n(x_1) \\ \vdots \\ \tilde{\varphi}_0(x_n) \ \tilde{\varphi}_1(x_n) \cdots \tilde{\varphi}_n(x_n) \end{vmatrix} > 0,$$

where $\tilde{\varphi}_j(x_i) = \varphi_j(x_i)$ if $x_{i-1} < x_i$, $\tilde{\varphi}_j(x_i) = \varphi'_j(x_i)$ if $x_{i-1} = x_i$, $0 \le j \le n$. For $p \in \Phi_n$, where $\{\varphi_0, ..., \varphi_n\}$ is an extended Chebyshev system of order 2, we say that x is a zero of order 2 of p if p(x) = p'(x) = 0. Then p has at most n zeros in [a, b] counting multiplicities up to 2. And when p has n distinct zeros, p(x) changes sign as x passes through each of its zeros and preserves the same sign between two consecutive zeros.

THEOREM. Let $\{\varphi_0, ..., \varphi_n\}$ be an extended Chebyshev system of order 2 on [a, b], and $p_1, p_{-1} \in \Phi_n$ be subject to $p_1(x) < p_{-1}(x), x \in [a, b]$. If $f \in C[a, b]$ satisfies $p_1(x) \leq f(x) \leq p_{-1}(x), x \in [a, b]$, then there exists a $p \in K(p_1, p_{-1})$ which interpolates f at n + 1 distinct points in [a, b].

Proof. We can assume that $f \notin \Phi_n$ and

$$d = \frac{1}{2} \inf\{ |\xi' - \xi''| : \xi', \, \xi'' \in D, \, \xi' \neq \xi'' \} > 0,$$

where

$$D = \{x \in [a, b] : f(x) = p_1(x) \text{ or } p_{-1}(x)\},\$$

for otherwise p = f or p_{δ} ($\delta = 1$ or -1) satisfies the requirements of the theorem.

Based on Theorem 3.1 in [4], there exists a generalized polynomial p^* which is the best uniform approximation (with the uniform norm $\|\cdot\| = \sup_{x \in [a, b]} |\cdot|$) to f from $K(p_1, p_{-1})$. Let

$$p_{\delta}^{*} = p^{*} - p_{\delta}, \qquad \delta = \pm 1;$$

$$C_{\delta} = \{x \in [a, b] : p_{\delta}^{*}(x) = 0\}, \qquad \delta = \pm 1;$$

$$E_{\delta} = \{x \in [a, b] : f(x) - p^{*}(x) = \delta || f - p^{*} ||\}, \qquad \delta = \pm 1;$$

$$\sigma(x) = \begin{cases} 1, & \text{if } x \in E_{1} \cup C_{1}, \\ -1, & \text{if } x \in E_{-1} \cup C_{-1}; \end{cases}$$

and

$$C_{\pm} = C_1 \cup C_{-1}.$$

Based on Theorem 3.2 in [4], we can find n+2 points $x_1 < \cdots < x_{n+2}$ such that $x_i \in C_{\pm} \cup E_1 \cup E_{-1}$ and

$$\sigma(x_i) = (-1)^{i+1} \sigma(x_1), \qquad i = 2, ..., n+2.$$

Write

 $X = \{x_i\}_{i=1}^{n+2}$

and

$$C = \{\xi \in C_{\pm} : p^{*}(\xi) = f(\xi)\},\$$

$$c = \frac{1}{3}\min\{|\xi' - \xi''| : \xi', \xi'' \in C_{+} \cup \{a, b\}, \xi' \neq \xi''\}.$$

Let |C| and $|C_{\pm}|$ denote the numbers of elements of C and C_{\pm} , respectively. If $|C| \ge n+1$, then p^* is the required polynomial. And if $|C_{\pm}| = 0$, then by the alternating property p^* still meets the requirement of the theorem. So we assume that

$$|C| \leq n, \qquad |C_+| \geq 1.$$

Moreover, it can be proved that

$$|C_+| \leq n+1.$$

In fact, if there exist at least n+2 points in C_{\pm} , then we can find a $\delta \in \{1, -1\}$ with $|C_{\delta}| \ge (n+3)/2$ if *n* is odd. Since each point in C_{δ} is a zero of p_{δ}^* of order 2 with the exception of at most two endpoints, p_{δ}^* has at least n+1 zeros counting multiplicities, which is a contradiction. When *n* is even, if there exists a $\delta \in \{1, -1\}$ such that $|C_{\delta}| \ge (n+2)/2 + 1$, then p_{δ}^* has at least n+2 zeros, and if $|C_1| = |C_{-1}| = (n+2)/2$, then there exists

a $\delta \in \{1, -1\}$ for which at most one endpoint belongs to C_{δ} , and hence p_{δ}^{*} has at least n + 1 zeros. Again, these are impossible.

In what follows, we find *n* points $\{y_i\}_{i=1}^n$, a $q \in \Phi_n$ with *n* zeros $\{y_i\}$, and an $\varepsilon > 0$ such that $p^* - \varepsilon q$ meets the requirements of the theorem.

Case 1. If $|C_{\pm}| \leq n$, write $n' = |C_{\pm}|$ and

$$C_{\pm} = \{\xi_1, ..., \xi_{n'-1}, \xi_n\},\$$

where

 $\xi_i < \xi_i, \qquad i < j. \tag{1}$

Let

$$J = \{1, ..., n' - 1, n\}.$$

Choose arbitrarily n - n' points in $(\xi_{n'-1} + c, \xi_n - c)$ (or in $(a, \xi_n - c)$ if n' = 1),

$$y_{n'} < \cdots < y_{n-1},$$

and set

 $\sigma = 1$.

Case 2. If $|C_{\pm}| = n + 1$, then we can find an $\xi^* \in C_{\pm} \setminus C$ since $|C| \leq n$. Write

$$C_{\pm} \setminus \{\xi^*\} = \{\xi_1, ..., \xi_n\}$$

subject to (1). Let

$$J = \{1, ..., n\}.$$

Choose a $\xi_{i} \in C_{\pm}$ adjacent to ξ^* , and let

$$\sigma = \begin{cases} (-1)^{j^*-1} \sigma(\xi_{j^*}), & \sigma(\xi^*) \sigma(\xi_{j^*})(\xi_{j^*}-\xi^*) > 0, \\ (-1)^{j^*} \sigma(\xi_{j^*}), & \sigma(\xi^*) \sigma(\xi_{j^*})(\xi_{j^*}-\xi^*) < 0. \end{cases}$$
(2)

In both cases, we set a y_i adjacent to ξ_i for each $j \in J$. Let

$$\sigma_j = (-1)^{j-1} \, \sigma \sigma(\xi_j), \qquad j \in J. \tag{3}$$

Write

$$X_{1} = \{\xi_{j} : j \in J, \ p_{\sigma(\xi_{j})}^{*}(\xi_{j}) \neq 0\},\$$
$$X_{2} = \{\xi_{j} : j \in J, \ \xi_{j} + \sigma_{j}c \notin [a, b]\}$$

and

Clearly

$$X_* = X_1 \cup X_2.$$

$$X_* \subset \{a, b\}.$$
(4)

Since $X \cap C \subset \{\xi_i : j \in J\}$ we can write

$$(X \cap C) \setminus X_{\ast} = \{\xi_{j_1}, ..., \xi_{j_m}\}$$

$$(5)$$

with $j_1 < \cdots < j_m$, $j_i \in J$. Now, for $j \in J \setminus \{j_i\}_{i=1}^m$, let

$$y_j = \begin{cases} \xi_j, & \text{if } \xi_j \in X_*, \\ \xi_j + \sigma_j c, & \text{otherwise;} \end{cases}$$
(6)

and for i = 1, ..., m, let

$$y_{j_i} \in Y_{j_i} \tag{7}$$

be undetermined, where

$$Y_{j_i} = (\xi_{j_i}, \xi_{j_i} + \sigma_{j_i} \rho) \quad \text{or} \quad (\xi_{j_i} + \sigma_{j_i} \rho, \xi_{j_i})$$
(8)

with

$$\rho \leqslant \min\{c, d\} \tag{9}$$

a positive constant, which we determine later.

Now, take a non-vanishing $q \in \Phi_n$ having $n \operatorname{zeros} \{y_j\}_{j=1}^n$. For each $\xi_j \notin X_*$, $j \in J$, based on (6), (7), and (8) we see that y_j is on the right side of ξ_j if $\sigma_j = 1$ and on the left side if $\sigma_j = -1$. Therefore, in Case 1 we can find from (3) that for any pair of consecutive points $\xi' < \xi''$ in $C_{\pm} \setminus X_*$

there exist an even number of zeros of q in (ξ', ξ'') ,

if
$$\sigma(\xi') \sigma(\xi'') > 0$$
 (*)

there exist an odd number of zeros of q in (ξ', ξ'') ,

if $\sigma(\xi') \sigma(\xi'') < 0$.

Moreover, if ξ' or $\xi'' \in X_2 \subset X_*$, then by the definition of X_2 , (*) is still true though (6) holds. So (*) holds for $C_{\pm} \setminus X_1$. In Case 2, the situation is similar if $\xi^* \notin \{\xi', \xi''\}$. And if $\xi^* < \xi_{i^*}$, then by (2) and (3) we have

$$\sigma_{j^{\bullet}} = \begin{cases} 1, & \sigma(\xi^{\bullet}) \ \sigma(\xi_{j^{\bullet}}) > 0, \\ -1, & \sigma(\xi^{\bullet}) \ \sigma(\xi_{j^{\bullet}}) < 0. \end{cases}$$

Considering in addition that there exists no zero of q "adjacent to" ξ^* , we can see that (*) holds if $\xi' = \xi^*$, $\xi'' = \xi_{j^*}$, and if $j^* > 1$, $\xi' = \xi_{j^*-1}$, $\xi'' = \xi^*$ then (*) holds as well. Similarly, when $\xi^* > \xi_{i^*}$ the same conclusion holds. Therefore, multiplied by -1 if necessary, q satisfies

$$\sigma(\xi) q(\xi) \leq 0, \qquad \xi \in C_{\pm} \setminus X_1$$

and

$$\sigma(\xi) q(x) \leq 0, \qquad x \in \overline{O}(\xi, \rho), \quad \xi \in (C_{\pm} \setminus X_1) \setminus \{\xi_{j_i}\}_{i=1}^m, \tag{10}$$

where $\overline{O}(\xi, \rho)$ denotes the closure of $O(\xi, \rho)$, the ρ -neighbourhood of ξ .

Now suppose that we have determined ρ subject to (9) and y_i $(j \in \{j_i\}_{i=1}^m)$ subject to (7) (and hence q) and have found an $\varepsilon > 0$ such that

$$\|eq\| < \min\{e_1, e_2, e_3\},\tag{11}$$

where

$$\begin{cases} e_1 = \min_{x \in [a, b] \setminus O(C_{\pm}, \rho)} \{ \min_{\delta = \pm 1} |p_{\delta}^*(x)| \}, \\ e_2 = \min_{\xi \in C_{\pm}} \{ \min_{x \in O(\xi, \rho)} |p_{-\sigma(\xi)}^*(x)| \}, \\ e_3 = \min_{x \in X \setminus C} |f(x) - p^*(x)|; \end{cases}$$
(12)

and

$$|\varepsilon q(x)| \le |p^*_{\sigma(\xi)}(x)|, \qquad x \in O(\xi, \,\rho), \quad \xi \in X_1$$
(14)

if $X_1 \neq \Phi$; moreover

$$\min_{x \in \mathcal{O}(\xi_{j_{\ell}}, \rho)} \sigma(\xi_{j_{\ell}}) [p^*_{\sigma(\xi_{j_{\ell}})}(x) - \varepsilon q(x)] = 0, \qquad i = 1, ..., m.$$
(15)

Then by (11), (12), (10), and (14) we see that

$$p_1(x) \leq p^*(x) - \varepsilon q(x) \leq p_{-1}(x), \qquad x \in [a, b] \setminus \bigcup_{i=1}^m O(\xi_{i}, \rho).$$

Combining this with (15) we get

$$p^* - \varepsilon q \in K(p_1, p_{-1}).$$

On the other hand, by (5) we can rewrite

$$X = (X \setminus C) \cup \{\xi_{j_1}, ..., \xi_{j_m}\} \cup (X \cap C \cap X_*),$$

and, based on (15), for each ξ_{j_i} we can choose an adjacent point $x'_{j_i} \in \overline{O}(\xi_{j_i}, \rho)$ satisfying

$$\sigma(\xi_{j_i})[p^*_{\sigma(\xi_{j_i})}(x'_{j_i})-\varepsilon q(x'_{j_i})]=0, \qquad i=1,...,m.$$

It is then easy to check that when x takes the values of $(X \setminus C) \cup \{x'_{i_i}\}_{i=1}^m$ one by one in order of magnitude, $f(x) - [p^*(x) - \varepsilon q(x)]$ takes positive and negative values alternately, because for the points in $X \setminus C$ we have (11) and (13), and for x'_{j_i} we have $p_1(x'_{j_i}) < f(x'_{j_i}) < p_{-1}(x'_{j_i})$, which is obtained from (9) and the definition of d. In addition, the function equals zero when $x \in X \cap C \cap X_*$ by (6). So from (4) we conclude that $p^* - \varepsilon q$ interpolates f at n+1 distinct points.

It remains to find ρ , ε , and y_{j_i} , i = 1, ..., m (and hence q), satisfying the demands mentioned above. Let

By Q_0 and Q_i we denote $(\partial/\partial x) Q$ and $(\partial/\partial \eta_i) Q$, respectively. From the definition of an extended Chebyshev system we have

$$(-1)^{j_i+j_1}\sigma_{j_1}\sigma(\xi_{j_1}) Q_0(\xi_{j_i},\xi_{j_1},...,\xi_{j_m}) > 0, \qquad i=1,...,m.$$

Then for each i = 1, ..., m, by the continuity of Q_0 there exists $\rho_i > 0$ such that

$$(-1)^{j_{i}+j_{1}} \sigma_{j_{1}} \sigma(\xi_{j_{1}}) Q_{0}(x, \eta_{1}, ..., \eta_{m}) > 0,$$

$$x \in \overline{O}(\xi_{j_{i}}, \rho_{i}), \quad \eta_{v} \in \overline{O}(\xi_{j_{v}}, \rho_{i}), \quad v = 1, ..., m.$$
(17)

Furthermore, considering the fact that $Q_i(\xi_{j_k}, \xi_{j_1}, ..., \xi_{j_m}) = 0$, $k \neq i$ (k, i = 1, ..., m), we can find an $\alpha > 0$ and a positive

$$\rho' \leq \min_{i=1,\ldots,m} \rho_i$$

such that for each i = 1, ..., m

$$|Q_{i}(x,\eta_{1},...,\eta_{m})| > \alpha, \qquad x \in \bar{O}(\xi_{j_{i}},\rho'), \quad \eta_{v} \in \bar{O}(\xi_{j_{v}},\rho'), \quad v = 1,...,m, \quad (18)$$

and

$$|Q_i(x,\eta_1,...,\eta_m)| \leq \frac{\alpha}{m}, \qquad x \in \overline{O}(\xi_{j_k},\rho') \quad \text{with} \quad k \neq i, \quad \eta_v \in \overline{O}(\xi_{j_v},\rho'),$$
$$v = 1, ..., m. \tag{19}$$

Now let

$$\mu = \max_{\substack{\eta_i \in \mathcal{O}(\xi_{j_i}, \, \rho') \\ i = 1, \, \dots, \, m}} \left\{ \max_{x \in [a, \, b]} |\mathcal{Q}(x, \, \eta_1, \, \dots, \, \eta_m)| \right\}.$$

If $X_1 = \emptyset$, let

$$\rho = \min\{\rho', c, d\},\$$

and

$$\varepsilon = \frac{1}{2} \frac{\min\{e_1, e_2, e_3\}}{\mu}.$$

Then for

$$q(x) = Q(x, y_{j_i}, ..., y_{j_m}),$$
(20)

where $y_{j_i} \in Y_{j_i}$ (see (8)) is undetermined, and (11) holds. And if $X_1 \neq \emptyset$, we set

$$\mu' = \min_{\xi \in X_1} |p_{\sigma(\xi)}^{*\prime}(\xi)|$$

and

$$\mu'' = \max_{\substack{\eta_i \in \bar{O}(\xi_{j_i}, \rho'') \\ i = 1, ..., m}} \{ \max_{\substack{x \in \bar{O}(\xi, \rho'') \\ \xi \in X_1}} |Q_0(x, \eta_1, ..., \eta_m)| \},\$$

where $0 < \rho'' \leq \rho'$ satisfies

$$|p_{\sigma(\xi)}^{\star\prime}(x)| > \frac{\mu'}{2}, \qquad x \in O(\xi, \, \rho''), \qquad \xi \in X_1.$$

Let

$$\rho = \min\{\rho'', c, d\},\$$

and

$$\varepsilon = \frac{1}{2} \min \left\{ \frac{\min\{e_1, e_2, e_3\}}{\mu}, \frac{\mu'}{\mu''} \right\}.$$

Then clearly q in (20) satisfies (11). And in addition we have (14) because

$$\varepsilon q'(x) \leq \frac{\mu'}{2}, \qquad x \in O(\xi, \rho), \qquad \xi \in X_1.$$

We must choose $y_{j_i} \in Y_{j_i}$ so that (15) holds. Fix $(\eta_2, ..., \eta_m) \in \overline{Y}_{j_2} \times \cdots \times \overline{Y}_{j_m}$ arbitrarily. Let

$$M(\eta_1) = \min_{x \in \mathcal{O}(\xi_{j_1}, \rho)} \sigma(\xi_{j_1}) [p^*_{\sigma(\xi_{j_1})}(x) - \varepsilon Q(x, \eta_1, ..., \eta_m)].$$

Let us consider the sign of $M(\eta_1)$. For $p^*_{\sigma(\xi_{j_1})}$ clearly we have

$$p_{\sigma(\xi_{j_1})}^*(\xi_{j_1}) = 0,$$

$$p_{\sigma(\xi_{j_1})}^*(\xi_{j_1}) = 0.$$

As for Q, we have

$$Q(\xi_{j_1}, \xi_{j_1}, \eta_2, ..., \eta_m) = 0,$$

and by (17)

$$\sigma_{j_1}\sigma(\xi_{j_1}) Q_0(\xi_{j_1},\xi_{j_1},\eta_2,...,\eta_m) > 0,$$

and hence

$$\sigma(\xi_{j_1}) Q(x, \xi_{j_1}, \eta_2, ..., \eta_m) > 0, \qquad x \in Y_{j_1}.$$

Thus we see that

 $M(\xi_{j_1}) < 0.$

On the other hand, since $Q(x, \xi_{j_1} + \sigma_{j_1}\rho, \eta_2, ..., \eta_m)$ preserves the same signs for various $x \in O(\xi_{j_1}, \rho)$ and equals zero if $x = \xi_{j_1} + \sigma_{j_1}\rho$, by (17) (let i = 1, $x = \eta_1 = \xi_{j_1} + \sigma_{j_1}\rho$) it is easy to check that

$$Q(\xi_{j_1}) Q(x, \xi_{j_1} + \sigma_{j_1} \rho, \eta_2, ..., \eta_m) < 0, \qquad x \in O(\xi_{j_1}, \rho).$$

Considering

$$\sigma(\xi_{j_1}) p^*_{\sigma(\xi_{j_1})}(x) > 0, \qquad x \in \overline{O}(\xi_{j_1}, \rho) \setminus \{\xi_{j_1}\}$$

we get

$$M(\xi_{j_1}+\sigma_{j_1}\rho)>0.$$

So the continuity of the function implies that there exists an $\bar{\eta}_1 \in Y_{j_1}$ such that

$$M(\tilde{\eta}_1) = 0.$$
(21)

Based on (18), $Q_1(x, \eta_1, ..., \eta_m)$ preserves the same signs for various $x \in \overline{O}(\xi_{j_1}, \rho)$ and $\eta_1 \in \overline{Y}_{j_1}$. So for $x \in \overline{O}(\xi_{j_1}, \rho)$, $Q(x, \eta_1, ..., \eta_m)$ are all strictly monotone increasing (or decreasing) with respect to η_1 . And hence $M(\eta_1)$ is strictly monotone as well. So $\overline{\eta}_1 \in \overline{Y}_{j_1}$ satisfying (21) is unique.

Now, we assume inductively that for any $(\eta_v, ..., \eta_m) \in \overline{Y}_{j_v} \times \cdots \times \overline{Y}_{j_m}$, there exists a unique $(\overline{\eta}_1, ..., \overline{\eta}_{v-1}) \in Y_{j_1} \times \cdots \times Y_{j_{v-1}}$ such that

$$M_i(\bar{\eta}_1, ..., \bar{\eta}_{\nu-1}, \eta_{\nu}) = 0, \qquad i = 1, ..., \nu - 1,$$
(22)

where

$$M_{i}(\bar{\eta}_{1},...,\bar{\eta}_{\nu-1},\eta_{\nu}) := \min_{x \in O(\xi_{j_{i}},\rho)} R_{i}(x,\bar{\eta}_{1},...,\bar{\eta}_{\nu-1},\eta_{\nu}),$$

$$R_{i}(x,\bar{\eta}_{1},...,\bar{\eta}_{\nu-1},\eta_{\nu}) := \sigma(\xi_{j_{i}})[p_{\sigma(\xi_{j_{i}})}^{*}(x) - \varepsilon Q(x,\bar{\eta}_{1},...,\bar{\eta}_{\nu-1},\eta_{\nu},...,\eta_{m})].$$

By the arbitrariness of η_{ν} , (22) determines $\nu - 1$ single-valued functions on $\overline{Y}_{i_{\nu}}$,

$$\bar{\eta}_i = F_i(\eta_v), \qquad i = 1, ..., v - 1,$$
(23)

with their ranges contained in Y_{j_i} . It can be shown that these functions are continuous. In fact, if there exist an $\bar{\eta}_v \in \bar{Y}_{j_v}$ and an $\{\eta_{vl}\}_{l=1}^{\infty} \subset \bar{Y}_{j_v}$ such that $\eta_{vl} \to \bar{\eta}_v$ $(l \to \infty)$, but $\eta_{il} = F_i(\eta_{vl})$ does not converge to $\bar{\eta}_i = F_i(\bar{\eta}_v)$ for at least one $i \in \{1, ..., v-1\}$, then selecting a subsequence such that $\eta_{il} \to \tilde{\eta}_i$ (i=1, ..., v-1) we have

$$M_i(\tilde{\eta}_1, ..., \tilde{\eta}_{\nu-1}, \bar{\eta}_{\nu}) = 0$$
 for $i = 1, ..., \nu - 1$,

and $\tilde{\eta}_i \neq \bar{\eta}_i$ for at least one *i*, which contradicts the hypothesis of uniqueness.

As with $M(\eta_1)$, when $\eta_v = \xi_{j_v}$ and $\xi_{j_v} + \sigma_{j_v}\rho$, the values of $M_v(\bar{\eta}_1, ..., \bar{\eta}_{v-1}, \eta_v)$ (with $\bar{\eta}_i$ subject to (23)) have opposite signs. So by the continuity of M_v we can find $\bar{\eta}_v \in Y_{j_v}$ such that $M_v(\bar{\eta}_1, ..., \bar{\eta}_v) = 0$ (where $\bar{\eta}_i = F_i(\bar{\eta}_v)$). Thus we get an $(\bar{\eta}_1, ..., \bar{\eta}_v) \in Y_{j_1} \times \cdots \times Y_{j_v}$ for which

$$M_i(\bar{\eta}_1, ..., \bar{\eta}_v) = 0, \qquad i = 1, ..., v.$$

Moreover, this $(\bar{\eta}_1, ..., \bar{\eta}_{\nu})$ is unique. In fact, if there exists another $(\tilde{\eta}_1, ..., \tilde{\eta}_{\nu})$ satisfying the above requirements, then we can assume that $|\tilde{\eta}_1 - \bar{\eta}_1| = \max_{i=1,...,\nu} |\tilde{\eta}_i - \bar{\eta}_i| > 0$. For any $x \in \bar{O}(\xi_{j_1}, \rho)$, by (18) we have

$$|R_1(x,\bar{\eta}_1,...,\bar{\eta}_\nu) - R_1(x,\tilde{\eta}_1,\bar{\eta}_2,...,\bar{\eta}_\nu)| > \alpha |\tilde{\eta}_1 - \bar{\eta}_1|,$$
(24)

and by (19)

$$|R_{1}(x,\tilde{\eta}_{1},\bar{\eta}_{2},...,\bar{\eta}_{v}) - R_{1}(x,\tilde{\eta}_{1},...,\tilde{\eta}_{v})|$$

$$\leq \sum_{i=2}^{v} |R_{1}(x,\tilde{\eta}_{1},...,\tilde{\eta}_{i-1},\bar{\eta}_{i},...,\bar{\eta}_{v}) - R_{1}(x,\tilde{\eta}_{1},...,\tilde{\eta}_{i},\bar{\eta}_{i+1},...,\bar{\eta}_{v})|$$

$$\leq (v-1)\frac{\alpha}{m}|\tilde{\eta}_{1} - \bar{\eta}_{1}| < \alpha |\tilde{\eta}_{1} - \bar{\eta}_{1}|.$$
(25)

Suppose $\overline{\xi}$, $\overline{\xi} \in \overline{O}(\xi_{j_1}, \rho)$ satisfy

$$R_1(\bar{\xi}, \bar{\eta}_1, ..., \bar{\eta}_v) = M_1(\bar{\eta}_1, ..., \bar{\eta}_v) = 0,$$

$$R_1(\tilde{\xi}, \tilde{\eta}_1, ..., \tilde{\eta}_v) = M_1(\tilde{\eta}_1, ..., \tilde{\eta}_v) = 0.$$

Letting $x = \overline{\xi}$ in (24) and (25), we see that $R_1(\overline{\xi}, \tilde{\eta}_1, \bar{\eta}_2, ..., \bar{\eta}_v)$ has the same sign as $R_1(\overline{\xi}, \tilde{\eta}_1, ..., \tilde{\eta}_v)$. So by $R_1(\overline{\xi}, \tilde{\eta}_1, ..., \tilde{\eta}_v) \ge 0$ we get

$$R_{1}(\bar{\xi},\bar{\eta}_{1},...,\bar{\eta}_{\nu})-R_{1}(\bar{\xi},\tilde{\eta}_{1},\bar{\eta}_{2},...,\bar{\eta}_{\nu})<-\alpha\,|\tilde{\eta}_{1}-\bar{\eta}_{1}|.$$

Since (18) implies that Q_1 is sign-preserving for various $x \in \overline{O}(\xi_{j_1}, \rho)$, by (24)

$$R_{1}(\tilde{\xi}, \bar{\eta}_{1}, ..., \bar{\eta}_{\nu}) - R_{1}(\tilde{\xi}, \bar{\eta}_{1}, \bar{\eta}_{2}, ..., \bar{\eta}_{\nu}) < -\alpha |\tilde{\eta}_{1} - \bar{\eta}_{1}|.$$

Combining this with (25) we get

$$R_{1}(\tilde{\xi}, \tilde{\eta}_{1}, ..., \tilde{\eta}_{v}) = R_{1}(\tilde{\xi}, \tilde{\eta}_{1}, ..., \tilde{\eta}_{v}) - R_{1}(\tilde{\xi}, \tilde{\eta}_{1}, \tilde{\eta}_{2}, ..., \tilde{\eta}_{v}) + R_{1}(\tilde{\xi}, \tilde{\eta}_{1}, \tilde{\eta}_{2}, ..., \tilde{\eta}_{v}) - R_{1}(\tilde{\xi}, \tilde{\eta}_{1}, ..., \tilde{\eta}_{v}) < 0,$$

which contradicts the hypothesis of $M_1(\bar{\eta}_1, ..., \bar{\eta}_v) = 0$.

So at last we find $(\bar{\eta}_1, ..., \bar{\eta}_m) \in Y_{j_1} \times \cdots \times Y_{j_m}$ such that

$$\min_{x \in \mathcal{O}(\xi_{j_i}, \rho)} \sigma(\xi_{j_i}) [p^*_{\sigma(\xi_{j_i})}(x) - \varepsilon Q(x, \bar{\eta}_1, ..., \bar{\eta}_m)] = 0, \qquad i = 1, ..., m.$$

If we let $y_{j_i} = \bar{\eta}_i$, q defined by (20) satisfies (15). The proof is completed

The proof is completed.

ACKNOWLEDGMENT

The author is grateful to the referee for his valuable corrections and suggestions, which helped in revising the manuscript.

References

- 1. J. BRIGGS AND L. A. RUBEL, On interpolation by non-negative polynomials, J. Approx. Theory 30 (1980), 160-168.
- 2. A. HORWITZ, Restricted range polynomial interpolation, J. Approx. Theory 62 (1990), 39-46.
- 3. S. KARLIN AND W. J. STUDDEN, "Tchebycheff Systems: With Applications in Analysis and Statistics," Interscience, New York, 1966.
- 4. G. D. TAYLOR, Approximation by functions having restricted ranges, III, J. Math. Anal. Appl. 27 (1969), 241-248.